A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages.
نویسندگان
چکیده
UNLABELLED The cellular responses of the J774 macrophage cell line to zinc oxide and zirconium oxide nanoparticles have been studied by a comparative quantitative, protein level based proteomic approach. The most prominent results have been validated by targeted approaches. These approaches have been carried out under culture conditions that stimulate mildly the aryl hydrocarbon receptor, thereby mimicking conditions that can be encountered in vivo in complex environments. The comparative approach with two nanoparticles allows to separate the common responses, which can be attributed to the phagocytosis event per se, from the response specific to each type of nanoparticles. The zinc-specific responses are the most prominent ones and include mitochondrial proteins too, but also signaling molecules such as MyD88, proteins associated with methylglyoxal detoxification (glyoxalase 2, aldose reductase) and deoxyribonucleotide hydrolases. The in cellulo inhibition of GAPDH by zinc was also documented, representing a possible source of methylglyoxal in the cells, leading to an increase in methylglyoxal-modified DNA bases. These observations may be mechanistically associated with the genotoxic effect of zinc and its selective effects on cancer cells. BIOLOGICAL SIGNIFICANCE The responses of the murine J774 macrophage cell lines to two types of metallic oxide nanoparticles (zinc oxide and zirconium dioxide) were studied by a comparative 2D gel based approach. This allows sorting of shared responses from nanoparticle-specific responses. Zinc oxide nanoparticles induced specifically a strong decrease in the mitochondrial function, in phagocytosis and also an increase in the methylglyoxal-associated DNA damage, which may explain the well known genotoxicity of zinc. In conclusion, this study allows highlighting of pathways that may play an important role in the toxicity of the zinc oxide nanoparticles.
منابع مشابه
Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.
Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also inv...
متن کاملComparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages
Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate...
متن کاملSupporting information for “Analysis of Cellular Responses of Macrophages to Zinc Ions and Zinc Oxide Nanoparticles: A Combined Targeted and Proteomic
Fixation was initiated by adding an equal volume of fixative solution, previously warmed to 37°C, to the cells after treatment with zinc oxide nanoparticles for 24 hours. The fixative solution contained 5% glutaraldehyde (Electron Microscopy Sciences. Euromedex, Strasbourg, France) in a 0.1 M sodium cacodylate buffer (both Merck, Darmstadt, Germany) (305 mOsm. pH 7.3). After 10 min the mixture ...
متن کاملEffect of topotycan and zinc oxide nanoparticles combination on cytotoxicity and P53 gene expression against breast cancer (MCF-7) cell line
Introduction: Breast cancer is one of the most common malignancies in women worldwide. Today, nanoparticles are one of the hopes of treatment and diagnosis of many diseases, including cancer. the The present study aimed to explore the effect of topotycan and zinc oxide nanoparticles (ZnONPs) combination on cytotoxicity and P53 gene expression in MCF7 breast cancer cells. Materials and Methods: ...
متن کاملThe investigation of the effects of synthesized Zinc oxide nanoparticles on the DNA using green chemistry
In this study, the extract of coffee powder for green synthesis of zinc oxide nanoparticles has been used because it is compatibility with the environment and it does not produce any toxic substances in the reaction. Then, the interaction of zinc oxide nanoparticles with calf thymus DNA with various spectroscopic methods such as UV-Visible, fluorescence and circular dichroism (CD) techniques wa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of proteomics
دوره 134 شماره
صفحات -
تاریخ انتشار 2016